
Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

Marvin Damschen, Lars Bauer, Jörg Henkel

Vorlesung im SS 2016

- 1 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 2 -

3. Special Instructions

or: How to use the reconfigurable fabric

- 3 - M. Damschen, KIT, 2016

1. Introduction

3. Special Instructions

6. Coarse-Grained
Reconfigurable Processors

8. Fault-tolerance
by Reconfiguration

2. Overview

4. Fine-Grained
Reconfigurable Processors

7. Adaptive
Reconfigurable Processors

5. Configuration Prefetching

• Connecting the
reconfigurable fabric

• Special Instructions

• Input Data

• Control

• Coding

• Operand Passing

• Automatic
Detection

• Configuration
Thrashing

- 4 - M. Damschen, KIT, 2016

 Different alternatives exist to connect the
reconfigurable fabric with the (core-) CPU:

 External stand-alone processing unit
◦ Off-chip reconfigurable fabric, connected using I/O pins

◦ So-called ‘loosely coupled’

+ Can be used to connect the reconfigurable fabric with
general purpose processors on existing ICs

+ Fabric & CPU may execute in parallel (like GPU in PCIe card)

‒ Very high communication overhead

‒ No access to CPU-
internal information
(e.g. registers)
 All data has to be

transferred via the
data bus

src: [TCW+05]

- 5 - M. Damschen, KIT, 2016

+ Faster on-chip communication

+Can be used to connect the reconfigurable fabric with
general purpose processors

+May access external shared memory when
using a Cache coherency protocol
◦ Often, the control signals for such a protocol are not provided to

I/O pins; thus the off-chip coupling (previous approach) typically
cannot use shared memory

‒ Still relatively high commu-
nication overhead
and no access to CPU-
internal information

‒ Requires developing a
new IC

src: [TCW+05]

- 6 - M. Damschen, KIT, 2016

src: [TCW+05]

 Similar to the attached processing unit

+Additionally using dedicated Coprocessor

interface
◦ Providing dedicated control signals to start/interact with

the calculations

◦ Might provide an interrupt
that informs about completion
of operation (no need for
polling the coprocessor)

‒ Same drawbacks as

attached processing

unit

- 7 - M. Damschen, KIT, 2016

 So-called tightly coupled

 Using an embedded reconfigurable fabric

 CPU = ‘core processor’ with RFU

+Very low communication overhead (accessed like an
ALU or any other FU)

+High data bandwidth due to access to the CPU
internal information (e.g. the register file) in addition
to the memory access

‒ Requires developing a
new IC

‒ Requires modifying the
CPU architecture

src: [TCW+05]

- 8 - M. Damschen, KIT, 2016

 Processor may be soft core (i.e. synthesized /
implemented for the fabric) or a hard core (i.e. an
ASIC element within the fabric)

+High availability (e.g. using standard FPGAs), i.e.
no IC needs to be developed
◦ Often used to simulate the Coprocessor or RFU

approach, i.e. can be used
for loose- and tight coupling

‒May have noticeably reduced
frequency of the CPU

‒May require modifying the
CPU architecture

src: [TCW+05]

- 9 - M. Damschen, KIT, 2016

 The communication overhead of the loosely coupled
architectures (external/internal attached processor and
coprocessor) limits their applicability
◦ E.g. 50 cycles communication cost for the round trip in PRISM-I

 The speed improvement using the reconfigurable logic has to
compensate for the overhead of transferring the data
◦ This can be the case in applications where a huge amount of data has to

be processed using a simple algorithm that fits in the reconf. fabric

 Their main benefit is the ease of
constructing such a system using
a standard processor and standard
reconfigurable fabric

 Another benefit of this approach is
that the microprocessor and reconf.
fabric can work on different tasks at
the same time

src: [BL02]

- 10 - M. Damschen, KIT, 2016

 Communication costs are insignificant

◦ As a result, it is easier to obtain an increased performance
for a wider range of applications

 Design costs for this approach are higher

◦ It is not possible to use standard components

 Multiple RFUs can be connected to the core pipeline

◦ i.e. the reconfigurable fabric can be
partitioned into multiple RFUs

 Amount of reconfigurable hardware

is limited to what can fit inside a

chip

◦ Limits the performance gain

src: [BL02]

- 11 - M. Damschen, KIT, 2016

 The Instruction Set Architecture (ISA) is an abstraction level
between the hardware and the application

 Each processor provides a so-called core ISA, i.e. the ISA
that is implemented with the regular FUs

 ASIPs and Reconfigurable Processors extend this core ISA
by additional instructions, so-called Special Instructions
(SIs)
◦ Also called Custom Instructions or Instruction Set Extensions

 For the application programmer it appears as an assembly
instruction

 In Reconfigurable Processors an SI is implemented using
reconfigurable hardware
◦ Using fine-grained or coarse-grained reconfigurable fabrics

◦ Typical for tight coupling; can also be used for loose coupling

- 12 - M. Damschen, KIT, 2016

 Instruction Set Architecture (ISA)
◦ Type: RISC, CISC, VLIW, …

◦ Bit widths of data and address busses

◦ Number and size of visible registers (there might be further registers, e.g.
pipeline registers, or register windows)

◦ Instruction formats, actual instructions, addressing modes etc.

◦ A range of (virtual) memory addresses; stack handling

◦ Interrupt and exception handling

◦ Different privilege levels (e.g. for OS support)

◦ Function Calls (recommendations/rules for callers and callees)

 The ISA serves as the interface to the compiler

 Microarchitecture
◦ (Reconfigurable) Functional units

◦ Memory hierarchy; Cache architecture

◦ Branch prediction

◦ Bus Systems; Periphery

- 13 - M. Damschen, KIT, 2016

 Stream-based Special Instructions:
◦ They process large amounts of data in sequence (like a

continuous video sequence)

◦ Only certain tasks can benefit from this type

◦ Most of them are suitable for a coprocessor approach

◦ Examples: finite impulse response (FIR) filter, packet
processing (e.g. checksum, encryption) etc.

 Chunk-based Special Instructions:
◦ Not streaming huge amount of data but working on

larger parts of data (more than can be provided via the
registers)

◦ E.g. DCT on a 16x16 Macroblock of a video frame

- 14 - M. Damschen, KIT, 2016

 Element-based Special Instructions:

◦ Read small amount of data at a time (usually from

internal registers) and produce small amount of

output

◦ Can be used in almost all applications (they impose

fewer restrictions on the applications’ characte-

ristics)

◦ The obtained speedup is usually smaller

◦ Example: bit reversal, multiply accumulate (MAC),

variable length coding (VLC), trigonometric

functions (sin, cos), ex,…

- 15 - M. Damschen, KIT, 2016

 Complex addressing schemes are used in many
multimedia applications
◦ SIs would make these accesses more efficient

 Providing access to memory hierarchy allows
implementing specialized load/store operations or
stream-based operations
◦ The SI as an address generator: The SI logic is used to generate

the next address; address is fed to the standard load/store unit

◦ The SI uses the data memory: data is
accessed and processed by the SI

 If the SI can access memory, it is
important to maintain consis-
tency between the SI accesses
and the processor accesses

src: [BL02]

- 16 - M. Damschen, KIT, 2016

X00

X30

X10

X20
Y20

Y00

Y10

Y30

>> 1−

>> 1

>> 1

−
>> 1++

+
+

<< 1

<< 1

−

−

DCT HT

EXE Stage 1 EXE Stage 2 EXE Stage 3

 SIs often perform complex operations that cannot be
completed in a single cycle

 Either use a pipelined implementation (multiple SIs can
reside in different stages of the RFU at the same time

 Or use a multi cycle implementation

 A pipelined
implementation
provides higher
throughput, but
is more compli-
cated in case a
shared resource
is accessed (e.g.
main memory)

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

COMMENT: the pipelining could be
explained using a figure, but I guess
it’s better to explain it at the white
board

- 17 - M. Damschen, KIT, 2016

 State machine can control the execution

sequence of a particular SI execution

 Can also be used to pass

information from one SI

execution to another
◦ E.g. ‘context adaptive’ coding,

or a partial sum

 Allows sharing a common

resource (e.g. hardware

block or memory access)

among multiple states

s1 s2

s3

s5 s4

- 18 - M. Damschen, KIT, 2016

 ‘Variable’ is problematic for a VLIW processor
◦ E.g. due to memory access or calculation that

depends on the input data

◦ Unknown duration would result in pipeline stalls
with a potentially large performance loss

 For a super-scalar processor, variable

execution length can be dealt efficiently
◦ The RFU can be used similar to one of the standard

FUs by reservations stations

◦ Multiple RFUs can be dealt by multiple reservation
stations

- 19 - M. Damschen, KIT, 2016

 Generally, SIs for reconfigurable processors are
created at compile time

 SIs are embedded as assembly instructions to the
application
 need unique opcode when assembling

 Number of free opcodes is typically limited due to
32-bit instruction word length

 For SIs, the opcode is typically partitioned into two
parts:
◦ Format Identifier: A value in the regular opcode fields (i.e.

those that are also used by the core ISA) determining that
this is an SI (not declaring which one)

◦ SI Identifier: determines which SI is meant

- 20 - M. Damschen, KIT, 2016

 Address: The memory address of the
configuration bitstream for the instruction;
example: DISC, MOLEN etc.

 Instruction Number: An identifier that indexes a
configuration table where information such
as the configuration bit-
stream address is
stored;
example:
OneChip98,
RISPP etc.

src: [BL02]

M. Damschen, KIT, 2016

- 21 - M. Damschen, KIT, 2016

 Using an ‘Address’ identifier needs significantly

more bits, but the number of SIs is not limited by

a table
◦ Drawback: less bits are available to provide information

about operands

 For the ‘Instruction Number’ identifier, the

number of supported SIs can be increased if the

contents of the table can be changed at run time
◦ Drawback: complex task for the compiler, i.e. which SIs

shall be available in the table at which time? This
demands a control-flow analysis

- 22 - M. Damschen, KIT, 2016

 Approach for extending the number of supported SIs (or
reducing the number of opcode bits): Virtual SI Identifiers
◦ Provide a dedicated register, accessible from the application

◦ SI Identifier corresponds to the concatenation of the bits in the
register and the bits in the application binary

◦ Use so-called Helper Instruction to read/write the dedicated

register

◦ The resulting ‘actual SI ID’ can be used as bitstream address or as
instruction number (i.e. table pointer)

32-bit instruction word:
…

5-bit dedicated register:

5-bit
SI group

5-bit vir-
tual SI ID

10-bit actual SI ID

- 23 - M. Damschen, KIT, 2016

 The instruction word also specifies the operands to be
passed to the SI
◦ Can be immediate values, registers, etc.

◦ Can determine the source and/or destination of the operation

 Hardwired Operand Coding:
◦ The contents of all registers (or

a fixed subset) are sent to the SI

◦ The registers actually used
depend on the particular SI

◦ This allows the SI to access
more registers but makes the
register allocation more difficult
for the compiler

◦ Example: Chimaera (all eight
registers from the register file
can be accessed simultaneously) src: [BL00]

- 24 - M. Damschen, KIT, 2016

 The operands are in fixed positions in the

instruction word and are of fixed types

 Different encoding formats would have

different opcodes

 This the most

common

case

 Example:

OneChip98
src: [BL00]

- 25 - M. Damschen, KIT, 2016

 The position of the operands is configurable

 The degree of configuration can be very broad

 A configuration

table can be used

to specify the

decoding of the

operands
◦ E.g. register addr.

or immediate value

 Example: DISC,

RISPP
src: [BL00]

- 26 - M. Damschen, KIT, 2016

 SIs may use a dedicated register file or a shared register
file (i.e. shared with other instructions / functional units)

 A dedicated register file needs less ports than if it was
shared (some data might come from the general-purpose
register file, some from dedicated register file)
◦ Data has to be explicitly transferred to dedicated register file

◦ Natural solution for Coprocessor coupling

◦ Example: MOLEN

◦ Reduces HW complexity but complicates code generation due to
heterogeneity of registers

 Currently, most reconfigurable processors use a shared
register file
◦ This might change when more superscalar and VLIWs are used as

core processor

- 27 - M. Damschen, KIT, 2016

 Based upon Sparc-V8 ISA
◦ Using Virtual SI identifiers (altogether 1024 SI IDs)

 Using shared register file with 4 read ports & 2 write ports
◦ The 2 write ports are implemented as multi-cycle write back

◦ Still beneficial in comparison to 1 write port, e.g. consider a multi-cycle
operation with 2 results (e.g. div_mod) that would have to be called twice
otherwise (i.e. div, mod)

 Using flexible operand coding
◦ Different Formats declare particular parts of the instruction word as

register address or immediate etc.

 Providing SI memory access
◦ Variable execution length

◦ SIs not pipelined (could conflict with memory access)

◦ Allows internal state to control the SI flow and to reuse resources

 Typically chunk-based or element-based SIs

- 28 - M. Damschen, KIT, 2016

 Overview: Sparc-V8 ISA:

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

o p rd o p 3 rs 1 o p f

o p rd o p 3 rs 1

o p rd o p 3 rs 1

o p d is p 3 0

s im m 1 3

a s i rs 2

b it#

b it#

F o rm a t 1 (o p = 1): C a ll

F o rm a t 2 (o p = 0): S E T H I & B ra n c h e s

o p a o p 2

o p rd o p 2

d is p 2 2

im m 2 2

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0b it#

c o n d

F o rm a t 3 (o p = 2 o r 3): R e m a in in g In s tru c tio n s

rs 2

i= 1

i= 0

src: “The SPARC architecture manual, version 8”

- 29 - M. Damschen, KIT, 2016

Value
for op2

SPARC V8 Allocation RISPP Extension

0 UNIMP Helper instructions*

1 unused SI without register write back

2 branch on integer cond.

3 unused SI with one register write back

4 set register high 22 bits; NOP

5 unused SI with two register write back

6 branch on floating-point cond.

7 branch on coprocessor cond.

 Usage of ‘Format 2’:
Format 2 (op=0):

op rd op2 imm22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0bit#

*: To support the concept, e.g. used
to switch the virtual SI identifier

- 30 - M. Damschen, KIT, 2016

 Extension of ‘Format 2’:

immop

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 rd op2 1 1 si_op rs5 imm10
0 0 rd op2 1 0 si_op rs5 imm5
0 0 rd op2 0 1 si_op rs5
0 0 rd op2 0 0 si_op rs5

imm5
rs4 imm5
rs4 rs2

op2 determines the register write back

001 : no write back

011 : rd write back

101 : rd & rs5 write back

bit#

imm determines the input immediate

00 : no immediates

01 : rs2 used as 5-bit immediate

10 : rs2 and rs4 used as two 5-bit immediates

11 : rs2 and rs4 used as 10-bit immediate

src: [BSH08]

- 31 - M. Damschen, KIT, 2016
src: [BL02]

 White: traditional
compiler blocks

 Grey: New
Techniques for SI
Creation
 Pruning is used

to reduce the
amount of
candidates

 Black: traditional
HW Synthesis

Instruction
Creation

- 32 - M. Damschen, KIT, 2016

 Objective: Reduce the amount of code to be processed

 Manual identification:
◦ Programmer annotates the code with special directives (e.g. ‘pragma’)

◦ Used to identify the places that shall be optimize

 Static identification:
◦ Compiler analyses the code to determine candidates for potential

optimization (e.g. loops)

◦ Potentially limited, since the execution profile of some programs depends
on their input data

 Dynamic identification:
◦ Code is initially compiled without Special Instruction identification

◦ Optimization potential is identified by executing code on real data
(profiling)

◦ Most time consuming approach, but can achieve the best results

◦ Important: relies on significant and relevant data set to get good estimates

- 33 - M. Damschen, KIT, 2016

 Identification:
◦ Based on analyzing the control/dataflow graph

◦ Create new instructions by grouping operators or by
performing code transformations

◦ Result: a description of the new instructions

 Parameter estimation (instruction
characterization):
◦ The instruction description is processed and important

parameters, like instruction latency, size,
reconfiguration time etc. are estimated

 Instruction performance check:
◦ Checks whether or not the new instructions improve the

execution time of the code block

- 34 - M. Damschen, KIT, 2016

X00

X11

X01

X10

<< 1

DCT

<< 1

T00

T01

T11

T10

DCT

>> 1

>> 1

HT

>> 1

HT

>> 1-

+

+

+

+

-

- -

+

-

X00

X11

-

+

X01

X10

T00

T01

T11

T10

+

-

+

-

+

-

X00

X11

-

+

X01

X10

+

+

-

>> 1

-

>> 1

>> 1

>> 1

T00

T01

T11

T10

+

-

X00

X11

-

+

X01

X10

<< 1 +

+

-

<< 1 -

T00

T01

T11

T10

• Consider constraints
– Max. size of data path

– Number of I/O signals

– Number of control signals

• Increase reusability
– Combine similar data paths (MUX)

 Reduces the number of different instructions

that have to be placed in the RFU  reduces

the reconfiguration time

 Can result

in increased

latency, size,

or other

parameters

- 35 - M. Damschen, KIT, 2016

 For ASIPs: select one globally optimal instruction set

 Here: select multiple locally optimal instruction sets and
schedule the reconfigurations of the RFU along all control paths
◦ Local for individual hot spots

 Since the compiler cannot optimize all control paths, it has to
estimate the most common path and optimize it (using
profiling), considering that
◦ reconfiguring the RFU takes time and resources and

◦ the performance of the code depends on what instructions are configured
into the RFU

 In some compilers, no selection is done
◦ Instead, for each block, the instructions that optimize the block are

implicitly selected

◦ This can lead to solutions in which the processor spends most of its time
reconfiguring the RFU (so-called ‘Thrashing’, described a few slides later)

- 36 - M. Damschen, KIT, 2016

 The intermediate representation is marked with

information concerning where to use SIs

 The backend has to schedule the instruction and

assign a set of operand registers

◦ Alternative: the SIs have to be explicitly used by the

programmer (inline assembly) if the compiler is not able

to use them automatically

 If the reconfigurable logic runs asynchronously to

the core processor, the backend needs to insert

synchronization instructions

- 37 - M. Damschen, KIT, 2016

 Typical problematic scenario:
◦ Within one inner loop more

Special Instructions (SI) are
demanded than fit to the
reconfigurable hardware at the
same time, i.e.
#SIs > FPGA capacity

◦ Per loop iteration, some SIs need
to be replaced to load the next SI
 frequent reconfiguration, i.e.
configuration thrashing

◦  Performance is significantly
slower than without SIs (depends
on reconfiguration time and SI
execution time)

SI 1

SI 2

Application
Control

Flow

SIi

Reconf.
Hardware

(here: space
for 1 SI)

 two reconfi-
gurations per
loop iteration,
i.e. configu-
ration thrashing

Example:

- 38 - M. Damschen, KIT, 2016

 Simple Solution:
◦ Assumption: at compile time the capacity of the FPGA is known

(i.e. how many SIs fit to the FPGA at the same time)

◦ Then: predetermine, which SI ‘candidates’ (of a hotspots) shall be
realized as SIs (implemented on the FPGA) and which shall not
(implemented with the core ISA)
 Assure that all SIs of a hotspot fit to the FPGA at the same time

 Drawback:
◦ Upgrading to larger FPGA is inefficient (application won’t use it)

◦ Downgrading to a smaller FPGA might introduce thrashing again

◦ What if the reconfigurable logic has to be shared among multiple
competing applications?
 Then it is not known how many SIs of one task fit to the FPGA at the

same time

◦ Note: these are similar problems like in VLIW architectures (code
needs to be recompiled when number of Slots changes)

- 39 - M. Damschen, KIT, 2016

 Better approach: For each SI provide an

alternative implementation using the core ISA

 If the hardware Implementation for the SI is not

available when the SI is demanded then trigger

the core ISA implementation
◦ Using a trap, e.g. ‘unimplemented instruction exception’

◦ Typically used for CPUs that may or may not have
floating point support etc.

 Let a run-time system decide which SIs shall be

implemented with the reconfigurable hardware

and which shall use the core ISA

- 40 - M. Damschen, KIT, 2016

 Overhead in RISPP implementation: 38 cycles per trap (incl. every-
thing), compared to 544 cycles for e.g. SI core ISA implementa-
tion (for SATD, i.e. Sum of Absolute Transformed Differences)

 Further benefit: core ISA implementation may bridge the
reconfiguration time (i.e. avoid stalling)

Application

Trap Table

Trap Handler

SI core ISA impl.

Unavailable SI shall execute
 throw exception

return

identify
trap type

identify
SI ID

src: [BSH08]

- 41 - M. Damschen, KIT, 2016

 Alternative Solution: Conditional Branch
◦ Introduce new Helper Instruction that tests the availability

of the SI implementation

◦ Example:

 IF (hardware implementation for SI_x available)
THEN

 use SI assembly instruction
 ELSE

 use core ISA to implement SI functionality
 END IF

 Drawback: Introduces Overhead independent of
whether or not the SI implementation is available
◦ The trap handler only introduces overhead when the SI

implementation is not available (then it is slow anyway)

- 42 - M. Damschen, KIT, 2016

 Important Parameters
◦ How often is the SI executed?

 If it is executed rather seldom (in comparison to other SIs),
then maybe its hardware may never be reconfigured (or
reconfigured rather late) and thus most SI executions will be
implemented using the core ISA  Conditional Branch
advantageous

◦ SI execution time?
 If the SI execution time is rather short (e.g. 30 cycles using

core ISA) then an overhead of 38 cycles for the trap handler
would dominate the execution time  Conditional Branch
advantageous

 For SIs that are executed very often and that have
a long core ISA execution time, the Trap Handler
approach is advantageous

- 43 - M. Damschen, KIT, 2016

 Problem: The trap handler needs to identify which SI was
executed and which parameters were passed

 Example: Identifying the SI ID
◦ Read the SI instruction word

 Read ‘return register’ of trap (pointing to the instruction after the SI),
calculate address of SI from that and load the 32-bit SI instruction word

◦ Extract the 5-bit SI ID
 Load a mask (an immediate value) into a register, ‘and’ it to the 32-bit of the

SI and shift the result to the LSB
 Load the 5 bit from the dedicated register for the virtual opcode
 Combine both values (logical ‘shift’ and ‘or’ operation)

◦ Similar for the parameters (registers, immediate values etc.)

◦ Altogether: very large overhead

 Solution: additional Helper Instructions to accelerate this process
◦ The micro architecture knows the SI ID after the SI execution, it only needs

to be provided to the trap handler via another Helper Instruction

- 44 - M. Damschen, KIT, 2016

 Red highlights
show the new
Helper Instr.

 Loads all
possible register
/ immediate
combinations
◦ Could be opti-

mized towards
specific SIs

◦ Exploits the
availability of 2
write ports in
register file, i.e.
“regmov1” stores
2 of the (at most)
4 input registers

src: [BSH08]

void unimp_handler() {
 int si_id, regsav, g1, psr, rd1, rd2;
 int rs1, rs2, rs4, rs5, imm10, imm5_1, imm5_2;
 asm("mov %g1, g1” // save %g1 register
 "mov %psr, psr” // save CPU status
 "siid si_id” // load SI identifier
 "regmov1 rs1, rs2” // load input registers
 "regmov2 rs4, rs5”
 "imov5 imm5_1, imm5_2” // load immediates
 "imov10 imm10”
);
 switch (si_id) { // jump to cISA execution
 case 0x2A: // one showcase SI opcode
 ... // here comes cISA execution
 break;
 default:
 regsav = 0; // set amount of write backs
 break;
 }
 asm("mov psr, %psr“ // restore CPU status
 "mov g1, %g1“ // restore %g1 register
 "nop"
 "regsav rd1, rd2, regsave“ // SI register Write Back
 "restore“ // restore register window
 "jmpl %l2, %g0“ // set jump target
 "rett %l2 + 0x4“ // and return from handler
);
}

- 45 - M. Damschen, KIT, 2016

[TCW+05] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W.
Luk and P.Y.K. Cheung: “Reconfigurable computing: architectures and
design methods”, IEE Proc.-Comput. Digit. Tech., vol. 152, no. 2, pp.
193-207, March 2005.

[BL02] F. Barat, R. Lauwereins: “Reconfigurable Instruction Set Processors
from a Hardware/Software Perspecitve”, IEEE Transactions on Software
Engineering, vol. 28, no. 9, pp. 847-862, September 2002.

[BL00] F. Barat, R. Lauwereins: “Reconfigurable Instruction Set Processors:
A Survey”, IEEE International Workshop on Rapid System Prototyping
(RSP), pp. 168-173, June 2000.

[BSH08] L. Bauer, M. Shafique, J. Henkel: “A Computation- and
Communication Infrastructure for Modular Special Instructions in a
Dynamically Reconfigurable Processor”, IEEE 18th International
Conference on Field Programmable Logic and Applications (FPL), pp.
203-208, September 2008.

